## "PVC" NSSK Govt. Polytechnic Bilaspur at Kalol Lecture Planning (Theory)

Branch : Electrical Engg.

Subject : Fundamentals of Power Electronics

Semester: Session: Jan-May, 25

Cass Room : 14

| Te | acher : Vi         | ass Room : L4                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |   |
|----|--------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---|
| -  | No. of<br>Lectures | Chapter/<br>Unit<br>Description                         | Detail of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reference<br>Resources | A |
|    | 1-8                | Power<br>Electronic<br>Devices                          | Power electronic devices Power transistor:<br>construction, working principle, V-I characteristics<br>and uses. IGBT: Construction, working principle, V-I<br>characteristics and uses. Concept of single electron<br>transistor (SET) - aspects of Nano-technology.                                                                                                                                                                                                                                                                                                                                          | R1,R2,<br>R3,R4,R5     |   |
| 2. | 9-20               | Thyristor<br>Family<br>Devices                          | SCR: construction, two transistor analogy, types, working and characteristics. SCR mounting and cooling. Types of Thyristors: SCR, LASCR, SCS, GTO, UJT, PUT, DIAC and TRIAC Thyristor family devices: symbol, construction, operating principle and V-I characteristics. Protection circuits: over-voltage, over-current, Snubber, Crowbar.                                                                                                                                                                                                                                                                  | -do-                   |   |
| 3. | 21-34              | Turn-on<br>and Turn-<br>off Methods<br>of<br>Thyristors | SCR Turn-On methods: High Voltage thermal triggering, Illumination triggering, dv/dt triggering, Gate triggering. Gate trigger circuits – Resistance and Resistance-Capacitance circuits. SCR triggering using UJT, PUT: Relaxation Oscillator and Synchronized UJT circuit. Pulse transformer and optocoupler based triggering. SCR Turn-Off methods: Class A- Series resonant commutation circuit, Class B-Shunt Resonant commutation circuit, Class C-Complimentary Symmetry commutation circuit, Class D-Auxiliary commutation, Class E External pulse commutation. Class F- Line or natural commutation. | -do-                   |   |
| 4. | 35-47              | Phase<br>Controlled<br>Rectifiers                       | Phase control: firing angle, conduction angle. Single phase half controlled, full controlled and midpoint controlled rectifier with R, RL load: Circuit diagram, working, input- output waveforms, equations for DC output and effect of freewheeling diode. Different configurations of bridge controlled rectifiers: Full bridge, half bridge with common anode, common cathode, SCRs in one arm and diodes in another arm.                                                                                                                                                                                 | -do-                   |   |
| 5. | 48-56              | Industrial<br>Control<br>Circuits                       | Applications: Burglar's alarm system, Battery charges using SCR, Emergency light system, Temperature controller using SCR and Illumination control / far speed control TRIAC, SMPS. UPS: Offline and Online SCR based AC and DC circuit breakers.                                                                                                                                                                                                                                                                                                                                                             | l do                   |   |

Signature of Teacher with Date

Signature of HOD (EE)

## "PVC" NSSK Govt. Polytechnic Bilaspur at Kalol Practical Planning & Coverage

Branch : Electrical Engg.

Semester:

4th

Subject : Fundamentals of Power Electronics

Session:

Jan 25 - May 25

Teacher : Vivek Kumar

Lab Name: Electronics Lab

| ract<br>ical.<br>No. | Description of Practical                                                                                                                                                       | Reference for<br>Procedure/<br>Writeup | Likely<br>Dates | Actual<br>Dates | Sign |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|-----------------|------|
| 1                    | Test the proper functioning of DIAC to determine<br>the break over voltage.                                                                                                    | Lab Manual                             |                 |                 |      |
| 2.                   | Determine the latching current and holding current<br>using V-I characteristics of SCR.                                                                                        | Lab Manual                             |                 |                 |      |
| 3.                   | Test the variation of R, C in R and RC triggering circuits on firing angle of SCR.                                                                                             | Lab Manual                             |                 |                 |      |
| 4.                   | Test the effect of variation of R, C in UJT triggering technique.                                                                                                              | Lab Manual                             |                 |                 |      |
| 5                    | Perform the operation of Class - A, B, C, turn off circuits.                                                                                                                   | Lab Manual                             |                 |                 |      |
| 6                    | Perform the operation of Class -D, E, F turn off                                                                                                                               | Lab Manual                             |                 |                 |      |
| 7                    | Use CRO to observe the output waveform of half wave controlled rectifier with resistive load and determine the load voltage.                                                   | Lab Manual                             |                 |                 |      |
| 8                    | Draw the output waveform of Full wave controlled                                                                                                                               | Lab Manual                             |                 |                 |      |
| 9                    | and determine the load voltage.  Determine the firing angle using DIAC and TRIAC phase controlled circuit on output power under different loads such as lamp, motor or heater. | Lab Manual                             |                 |                 |      |
| 10                   | Simulate above firing angle control on School                                                                                                                                  | Lab Manual                             |                 |                 |      |
| 11                   | software.  Test the performance of given SMPS, UPS.                                                                                                                            | Lab Manual                             |                 |                 |      |
| 12                   | Troubleshoot the Burglar's alarm, Emergency light<br>system, Speed control system, Temperature control<br>system.                                                              | Lab Manual                             |                 |                 |      |

Signature of Teacher With

Signature of HOD (EE)